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Abstract
Some aspects of the theory of transport in chaotic Hamiltonian systems are
reviewed and applied to a model potential for diffusion of Na atoms on a Cu(001)
surface (Graham A P, Hofmann F, Toennies J P, Chen L Y and Ying S C 1997
Phys. Rev. Lett. 78 3900). Through a detailed investigation of the deterministic
dynamics, we describe how normal and anomalous diffusion can take place,
as well as the influence of the chaotic dynamics on the short-time dynamical
behaviour of the system and on the existence of long jumps. The theoretical
aspects of atom–surface diffusion relevant to experiments are also reviewed
and connected to some statistical models used to describe diffusion in chaotic
Hamiltonian systems.

Contents

1. Introduction 6193
2. Model system and potential 6195
3. Chaotic dynamics 6196

3.1. Dynamical properties of chaotic Hamiltonian systems 6197
3.2. Phase-space structure for the Na/Cu(001) system 6200

4. Normal transport 6204
4.1. Generalities about Brownian motion 6205
4.2. Diffusion of adatoms on surfaces; scattering formalism 6207
4.3. Diffusional line shapes; sources of broadening 6208
4.4. The Langevin and Kramers equations; first-passage-time distribution 6210
4.5. Normal deterministic transport in the Na/Cu system 6212

5. Anomalous transport 6214
5.1. Description of anomalous diffusion 6214
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1. Introduction

The diffusion of atomic and molecular adsorbates is one of the most elementary processes
taking place on surfaces. Its study is important both for practical and conceptual reasons.
On one hand, the diffusion of the adsorbates is a preliminary step in more complex
surface phenomena such as associative desorption and heterogeneous catalysis, and strongly
affects their overall efficiency. The need for quantitative and accurate knowledge of
diffusion coefficients or rates, as well as a detailed characterization of diffusion mechanisms
and adsorbate–substrate interactions, has stimulated considerable progress in experimental
techniques. There are different techniques available nowadays for obtaining accurate diffusion
coefficients and frequencies of adsorbates vibrations, each one with different ranges of
applicability and advantages. There is also a large body of literature on these techniques
and the information that it is possible to obtain from them; see for instance the reviews [1–4].
On the other hand, the basic theory behind atomic and molecular diffusion is conceptually very
rich, with important implications for different branches of physics, chemistry, and mathematics.
In general there are a number of different possible views of the same process and, depending
on the specific case, they can be equally valid, or one more appropriate than others. For
instance, a diffusion process can be considered as a problem of Brownian motion, whose
theory dates back to works by Einstein, Smoluchowski, Langevin, Rayleigh, Fokker, Planck,
and others at the beginning of the last century. That is, the diffusing particles follow stochastic
paths influenced by a random force coming from the huge number of degrees of freedom
of a large heat reservoir. The theory of stochastic processes was generalized and put on
firm mathematical grounds some time later by Stratonovich and Îto, and its foundations in
probability theory were also established by a number of mathematicians. This approach can
be supplemented by the existence of an external force field, as is the case for atomic diffusion
on a surface when considering the adiabatic particle–surface interaction potential. But atomic
or molecular diffusion can also be seen as a problem of activated escape over a potential barrier.
This line of thinking was initiated in the famous work of Kramers in 1940 [5] and it is still
active, having led to a large number of theoretical works and developments; see for instance
the reviews [6, 7]. While the first approach is intimately linked to non-equilibrium statistical
mechanics and hydrodynamics, the second one is very much related to the transition state
theory of chemical reactions. Here we will consider diffusion intrinsically as a dynamical
problem, and when long-time adsorbate motions are involved, non-commutation rules can be
ignored. In this sense, classical mechanics together with statistical physics applies naturally.

There is yet another view which comes from a simplification of the stochastic approach, by
assuming the coupling to the environment or the thermal bath in equilibrium to be negligible,
and considering as a starting point only the dynamics ruled by Newton’s equation. Although
conceptually it was Boltzmann’s original idea to deduce thermodynamics from the classical
microscopic equations of motion, for small systems with only a few degrees of freedom this
has been finding rigorous justification only in the last few decades, with the development of
the ergodic theory of non-linear dynamical systems [8].

It is not our intention to devote this review to the theory of chaotic transport, on which
good recent books and reviews exist [9–11], nor to particular experimental and theoretical
approaches to atom–surface diffusion that have been described at length elsewhere. We find
that most of the combined experimental and theoretical works on atom–surface diffusion have
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been based on the first two, more traditional, points of view, while theoretical developments of
non-linear transport theory have been mainly applied to simple models amenable to analytical
treatment, but difficult to subject to experimental verification. Our aim is to partially bridge the
gap between the two worlds by choosing a prototype system, well studied experimentally and
theoretically within the stochastic approach, and investigate in detail what kind of transport can
be induced by the deterministic dynamics, to characterize the mechanism for such transport and
consider its possible connection to real experiments. In doing so, we show that anomalous non-
Brownian transport can usually arise due to the underlying chaotic dynamics. We will study the
mechanism for anomalous transport in detail and relate it to some statistical models proposed.
We will also derive some original results in connecting these models to quantities of interest in
real experiments, in particular to the quasielastic helium-atom scattering (QHAS) technique.

The organization of the review is as follows. After briefly describing in the next section
the model system employed, which has been previously established and used in theoretical
and experimental QHAS studies [12], we perform a complete investigation of the chaotic dy-
namics of this system in section 3. First, we introduce the relevant theory in what we hope
will be an accessible way and then apply it to our model, emphasizing the essential physical
picture emerging from this study. We will also relate in this section the chaotic dynamics to the
vibrational (non-diffusive) motion of the adparticles, which can be studied experimentally by
the same technique. The investigation of the transport of the adparticles will start in section 4.
After some generalities about Brownian motion, we will describe the basic theory behind the
QHAS technique and its connection to the stochastic point of view. The deterministic diffusion
of our system in the Brownian diffusion regime will also be studied and related to the chaotic
dynamics. Section 5 is devoted to the anomalous transport regime, which can be induced by the
deterministic dynamics under some circumstances. Anomalous transport is by now recognized
not as a pathological phenomenon, but as a fairly general process supported by experimental
evidence in different physical systems. Nevertheless, as it is still much less known than Brow-
nian transport, we will describe its origins in detail. From the different possible approaches,
we choose one that is appropriate for making the connection to the deterministic dynamics and
to relevant quantities of the QHAS experiments. We also discuss in this section the influence
of dissipation and noise through the coupling to the thermal bath. Section 6 points out some
important conclusions and problems to be addressed in the future concerning this topic.

2. Model system and potential

The diffusion of Na atoms at different coverages on a Cu(001) surface has been recent and
extensively investigated experimentally with the QHAS technique, as well as theoretically
within the Langevin and Fokker–Planck (FP) formalisms [12–14]. At low coverages of
Na atoms, the adsorbate–adsorbate interactions can be disregarded and the corresponding
experimental features have been interpreted only in terms of the adsorbate–substrate interaction
governed by a non-separable potential energy surface (PES), whose parameters were fitted
to experimental results using molecular dynamics simulations in reference [12]. This PES
describes the systematic or adiabatic force affecting the Na atoms, which can be added to the
random force due to the thermal vibrations of the surface.

Since the vibrations of the Na adatoms normal to the surface have a much higher
frequency [15] than those parallel to the surface (the frustrated translational mode or T mode),
the adiabatic interaction potential is considered as being averaged over the normal vibrations.
Therefore the substrate potential is a two-dimensional function of only the in-plane coordinates
x and y:

V (x, y) = V0(x, y) + V1(x, y) + V2(x, y). (2.1)
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Figure 1. The Na/Cu(001) interaction potential. The zero of the energy axis is taken at the energy
of the hollow-site minima (x = y = 0, ±a, . . .). The x- and y-directions correspond to the [11̄0]
and [110] azimuths, respectively, and the barrier for motion along this direction is 74.64 meV. The
diagonal directions have Miller indices [100] and [010] and the energy barrier is at 84.49 meV.

The first term is a simple separable cosine potential:

V0(x, y) = V0[2 − cos(2πx/a) − cos(2πy/a)] (2.2)

where a is the lattice constant of the Cu(001) surface (a = 2.557 Å), and V0 = 41.4 meV. The
second term is added to produce a lowering of the potential barrier at on-top sites according
to the observations

V1(x, y) = −A
∑
m,n

exp(−b{[x/a − (m + 1
2 )]2 + [y/a − (n + 1

2 )]2}) (2.3)

with A = 2V0 and b = 11.8. Finally, the third term is a non-separable part which changes the
curvature near the minima and varies the difference between the potential at the minima and
the bridge positions:

V2(x, y) = CV0π
2
∑
m,n

[(x/a − m)2 + (y/a − n)2] exp[−(x/a − m)2 − (y/a − n)2] (2.4)

with C = −0.2. Note that for a periodic potential, the sums in (2.3) and (2.4) must run over
the entire set of integer pairs (m, n). In practice, for the classical trajectory simulations, we
reduce the dynamics to a single Wigner–Seitz cell by imposing periodic boundary conditions,
and the sum over Gaussians is truncated at some few terms (typically m and n vary between
−10 and 10). In figure 1 we show a 3D plot of the corresponding PES. The x- and y-directions
are taken along the azimuths with Miller indices [11̄0] and [110], respectively. The energy zero
is taken at the minima of the potential wells corresponding to hollow sites. The saddle-point
barrier along the x- or y-directions is at 74.64 meV, and the saddle-point barrier along the
diagonal [100] or [010] azimuths is at 84.49 meV. The small minima on the potential truncated
hills correspond to on-top sites above the copper atoms and are at energy 82.74 meV. As will
be shown later, they will also play a role in the classical dynamics and can be responsible for
the anomalously high rate of migration paths along the diagonal [100] direction detected in
the experiment [12]. The maxima at the top hills are located at 85.51 meV.

An important feature of the present PES is its non-separability, as opposed to a previous
PES used to reproduce the experiments [13, 16]. The separable PES could not explain all
the experimental findings—in particular, the marked anisotropy in diffusion along different
directions. The non-separability of the adiabatic potential can influence considerably the
occurrence of long jumps and the dependence of the diffusion coefficient on friction [16, b].
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3. Chaotic dynamics

Chaotic dynamics, or sensitivity to initial conditions, appears generically in dynamical systems
obeying non-linear differential equations. For autonomous (time-independent) Hamiltonian
systems, chaotic dynamics is possible with at least two degrees of freedom. Whenever we can
write the Hamiltonian as the sum of a kinetic energy part, depending only on the momenta,
and a potential energy part, a necessary condition for the existence of chaotic dynamics is
the non-separability of the potential energy function. Since the systematic atom–surface
interaction is usually described by a two- or three-dimensional non-separable PES [12,17,18],
the deterministic atom–surface dynamics is generally expected to be chaotic.

Usually the phase space of a chaotic Hamiltonian system consists of regions of partial
integrability, characterized by the existence of tori and dynamical stability, with interspersed
regions of chaotic behaviour. This behaviour has its origin in the dynamical instability
caused by the homoclinic and heteroclinic intersections of manifolds of unstable periodic
motions [19–21]. By changing a parameter of the Hamiltonian, like some coefficient in the
potential energy function or the total energy in the case of a conservative system, the degree of
chaos (or irregularity) of a system can be varied. It can range between complete integrability,
where no dynamical instability is present, and hyperbolicity (where all the periodic motions
are unstable) which implies ergodicity. The consequences of this intrinsic random behaviour
(intrinsic because it is generated by the deterministic equations of motion, without the need to
introduce any external ‘environment’ or fluctuations) are far reaching. For instance, a complete
description of the motion is generally impractical, and we can look for a statistical approach.
That is, the evolution and relaxation towards equilibrium of certain average quantities can be
studied, rather than the trajectory corresponding to a given set of initial conditions. Chaos
provides here a natural justification for the introduction of statistical ensembles. Since chaos
may already appear in Hamiltonian systems with only two degrees of freedom, statistical
mechanics can be justified for small classical systems. The presence of many particles is
not a basic requirement for the foundation of statistical mechanics, and in particular for the
existence of transport. As a consequence, great interest, also promoted by the advances in the
mathematical tools needed in ergodic theory of dynamical systems, is being aroused by the
study of transport properties of chaotic systems [9].

Apart from its fundamental importance in disciplines such as non-equilibrium statistical
mechanics, where chaos can provide a connection between the irreversible phenomenological
macroscopic equations and the reversible Hamiltonian equations [10], deterministic chaos can
also induce transport mechanisms not considered in conventional statistical mechanics. For
instance, the possibility of anomalous transport (mean squared displacements (MSDs) growing
faster or slower than linearly in time) will be considered below.

3.1. Dynamical properties of chaotic Hamiltonian systems

The dynamics is governed by the set of first-order differential equations

ẋ = F (x), (3.1)

where x is a point of the phase space of the system. Equivalently, the individual trajectories
in phase space are given by the mapping

x = Φt (x0) (3.2)

where Φt is the evolution rule, called the flow, that tells us where the initial points in phase
space x0 have moved to after a time t . In general it is a non-linear function of the initial
conditions and time.
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As remarked above, we can seek for a statistical description of the dynamics and study
the evolution of statistical ensembles of trajectories. Then we can define a probability density
in phase space given by

f (x, t) = lim
N→∞

1

N

N∑
i=1

δ(x − xi (t)) (3.3)

where the trajectories xi (t) are solutions of equations (3.1) or (3.2) with different initial
conditions. Applying the principle of conservation of probability, this density can be shown
to obey a continuity equation:

∂tf (x, t) = −∇ · (F (x)f (x, t)) (3.4)

determining the time evolution of the probability density, known as the Liouville equation.
The evolution of the phase-space volume is controlled by the Jacobian determinant of the

transformation (3.2) which is easily expressed, formally solving (3.1) and using (3.2), as

|det ∂xΦt | = exp
∫ t

0
∇ · F dτ. (3.5)

For Hamiltonian systems the phase-space volume is preserved and the divergence of the vector
field vanishes, ∇ · F = 0; therefore the Jacobian determinant in (3.5) is equal to unity. A
trajectory can be

stationary : Φt (x) = x for all t

periodic : Φt (x) = Φt+T (x) for a given minimum period T

aperiodic : Φt (x) �= Φτ (x) for all t �= τ .

Stationary points are usually equilibrium points of the potential energy function. Periodic
trajectories can be stable or unstable, giving rise to quasiperiodic or chaotic behaviour,
respectively, of nearby aperiodic trajectories.

The starting point for the investigation of the degree of irregularity of a complex dy-
namical system is therefore the analysis of the phase-space structure (equilibrium points and
periodic motions). This will give us a qualitative view of the main features at a given value
of the Hamiltonian parameters (usually the total energy), i.e., it should reveal the presence
of stability regions and chaos, and which domain of initial conditions will display chaotic or
quasiperiodic behaviour as time evolves. A more quantitative characterization of the degree
of chaos requires the calculation of global indicators such as Lyapunov exponents or different
definitions of entropy [9].

In a two-degree-of-freedom system, the study of the phase-space structure usually begins
with the analysis of the Poincaré surface of section. This is a mapping of the phase space
obtained by means of keeping one of the dynamical variables (say a position) fixed at a
constant value. Evolving a properly chosen set of initial conditions, whenever the dynamical
variable reaches this value for a trajectory, the other position and the corresponding conjugate
momentum are recorded, and this will be done for every trajectory of the initial ensemble. In
terms of the flow the Poincaré map is defined as

xn+1 = Φ(xn) (3.6)

where x are the dynamical variables intrinsic to the surface of the section. Periodic motions
are then seen as fixed points of the Poincaré map, xn = Φ(xn). Quasiperiodic trajectories
will give rise to regular islands and chaotic trajectories to randomly distributed points on the
surface of section (see figure 2).

It is clear that local stability of periodic motions is an important issue. To characterize
the stability of a trajectory, we study the evolution in time of small deviations δx from the
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Figure 2. The Poincaré surface of section at a total
energy of 80 meV, fixing the coordinate x: (a) x0 = 0;
(b) x0 = a/2.

reference trajectory x = Φt (x0). On substituting the new trajectory x′ = x + δx in (3.1) and
expanding to linear order in δx, we have that

δẋ = ∂xF (x)δx. (3.7)

Since this is a system of linear equations, all of its solutions can be expressed as

δxt = ∂x0Φ
t (x0) · δx0 = M(t, x0)δx0, (3.8)

where M(t, x0) is the fundamental matrix, that also obeys the evolution equation

Ṁ(t, x0) = ∂x0F [Φt (x0)] M(t, x0). (3.9)

In this context it is called the stability matrix. If the trajectory x is periodic with period
T , M(T , x0) is also known as the monodromy matrix. Its eigenvalues and eigenvectors
determine the local behaviour of neighbouring trajectories, since they describe the deformation
of the neighbourhood δx for a finite time t . Nearby trajectories can separate exponentially
along unstable directions (given by the eigenvectors of the corresponding eigenvalues λi with
|λi | > 1), approach each other along stable directions (|λi | < 1)), and maintain their distance
along marginal directions (|λi | = 1).

In Hamiltonian systems, due to the symplectic structure of the Hamilton equations of
motion, real eigenvalues come in pairs (λ, 1/λ), one corresponding to the unstable direction
and the other to the stable one, while complex eigenvalues come in pairs, |λ| = 1, or in quartets
(only for systems with more than two degrees of freedom), λ, 1/λ, λ∗, 1/λ∗. For a two-
dimensional Hamiltonian system, therefore, the Poincaré map first reduces the monodromy
matrix to a 2 × 2 matrix. Then we can have a couple of real eigenvalues, which implies that
our periodic orbit is unstable, or a pair of complex conjugated eigenvalues, implying that the
periodic trajectory is stable.



6200 J L Vega et al

All the analysis mentioned above refers to the properties of trajectories at a given value
of the Hamiltonian parameters, say the total energy. However, one is frequently interested in
obtaining information for a particular set or range of energies. In this case one has to study the
parametric evolution of the phase-space structure. KAM theory (see, for example, [19]) gives a
detailed understanding of the destruction of individual tori in phase space under perturbations.
However, we would like to obtain a global picture of the phase-space structure at any relevant
energy. A good strategy is to follow the evolution with energy of the principal periodic orbits.
By ‘principal’ we mean the simplest ones (those with smaller periods and simplest topology in
general), since periodic orbits of higher periods usually originate from them. An appropriate
starting point for defining the main families of periodic orbits is Weinstein’s theorem [22], that
guarantees the existence, in the vicinity of an equilibrium point of the potential, of as many
periodic orbits as degrees of freedom of the system. There are a number of numerical techniques
for locating periodic orbits, even when they are highly unstable [23]. The one that we have used
here is based on shooting methods for solving ordinary differential equations with two-point
boundary conditions [24]. Then once we have located a given periodic orbit, for instance close
to an equilibrium point, we change the energy slightly and find it again at the new total energy.

Let us express the eigenvalues of the monodromy matrix as λ = exp (αT ). For a two-
dimensional Hamiltonian system and a periodic orbit of period 1 in the Poincaré map this
matrix will take the form

M1 =
(

eα1 0
0 e−α1

)
. (3.10)

The stability of the periodic orbit can be deduced directly from the trace of the monodromy
matrix. When the eigenvalues are complex, α1 = iσ1, we have that Tr M1 = 2 cos σ1. If they
are real then Tr M1 = 2 cosh α1. Therefore the stability is given by

|Tr M1| � 2 stable

|Tr M1| > 2 unstable.

For a periodic orbit which is a fixed point of period n of the Poincaré map, this criterion is
equally valid on replacing M1 by Mn.

To calculate the evolution of the monodromy matrix under the Poincaré map, we use the
property Mn = Mn

1. Thus its trace after n iterations of the map will be

Tr Mn = 2 cos(nσ1) = 2 cos

[
n

{
arccos Tr

M1

2

}]
(3.11)

for stable fixed points, and with the cosines replaced by hyperbolic cosines for unstable ones.
Now the question is how periodic orbits appear in general. It is possible to show [25] that,
when the stability matrix has an eigenvalue λ = ±1, the variational equations (3.9) have a
periodic solution. Therefore a periodic orbit of period n in the Poincaré map can only appear
(or one already existing disappear) when

Tr Mn = 2 (3.12)

and this is called a bifurcation. Using (3.11), we can readily see that fixed points of higher
periods n can be obtained from the period-1 fixed point whenever the relation

Tr M1 = 2 cos
2πm

n
(3.13)

is fulfilled, where m is an integer number such that the cosine is modulo π . Unstable periodic
orbits do not bifurcate (do not give rise to new ones), but they can change their stability. The
possible types of bifurcation in two-dimensional Hamiltonian systems number only five [26,27]
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Figure 3. The main period-1 periodic orbits of the system
at E = 80 meV restricted to the Wigner–Seitz cell (we
show also the equipotential line at this energy).

but, for our purposes, the most important one is the period-doubling bifurcation (n = 2, m = 1,
and Tr M1 = −2) which changes the stability of the period-1 motion.

It is clear that locating the most important periodic orbits of period 1 and following the evo-
lution of the monodromy matrix with energy, we can obtain a lot of information about how the
phase-space structure changes through bifurcations. In the following section we will apply this
theory to the deterministic dynamics of Na atoms in the Cu(001) potential previously described.

3.2. Phase-space structure for the Na/Cu(001) system

For an atom–surface interaction potential, the x- and y-coordinates extend from −∞ to ∞
but, due to its periodicity, we can restrict the dynamics to the relevant Wigner–Seitz cell
and impose periodic boundary conditions for the classical trajectories—that is, each time a
trajectory crosses the boundary of a Wigner–Seitz cell we reinject it from the opposite boundary
with the same momenta. Doing so, we get a dynamically significant picture of the phase space
by fixing a coordinate for a Poincaré surface of section inside the appropriate Wigner–Seitz cell.

We found [28] three principal periodic motions arising from the minima of the potential
wells at hollow sites. They are depicted for illustration in figure 3 at E = 80 meV (above
the diffusion barrier along the x- and y-directions) restricted to the Wigner–Seitz cell. One
is an orbit parallel to the x-direction or, equivalently, the y-direction (due to the symmetry
of the potential, all periodic orbits with a reflection symmetry about the plane x = 0 have
their counterpart in orbits with reflection symmetry about y = 0). For energies below the
saddle-point barrier, Es ∼ 74.6 meV, this orbit represents a frustrated parallel translation,
but for E > Es it describes free drifting motions along the x- or y-directions. Because the
frequencies of these two modes are degenerate, they can be added or subtracted to give also
two normal modes along the [100] or [010] azimuths (the diagonal directions). Note that
the PES has also a reflection symmetry about the x = y or −y planes. This periodic orbit
is localized for E < 84.49 meV and free above this energy. Finally, a circular-type orbit,
analogous to a frustrated rotation, also starts from the hollow minimum. This orbit describes
a localized motion inside the potential well even at energies greater than the on-top maxima,
Emax ∼ 85.5 meV, and it is responsible for the intrawell dynamics. We can understand the
motion of the circular orbit at low energies as a combination of the frustrated translations along
x and y with different phases, in analogy with the problem of normal modes of vibration [29].
The parallel and circular orbits are stable inside the well, but the diagonal one is unstable.

Close to the potential minima the system is nearly integrable, and information about the
fundamental frequency of localized motions can be obtained by semiclassical quantization
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of the parallel translations. The Einstein–Brillouin–Keller quantization condition can be
expressed as [30]

1

2π

∮
C

(px dx + py dy) = h̄

(
n +

µ

4

)
, n = 0, 1, 2, . . . (3.14)

where the action integrals are calculated along topologically independent closed paths defining
a torus in phase space, and µ is the Maslov index which depends only on the topology of the
classical orbit (µ = 2 in our case). For the parallel translations, one of the momenta is always
zero and the problem is reduced to one dimension; therefore the periodic orbit is semiclassically
quantized by calculating its action integral along one period as we change the energy. When
the quantization condition is matched for n = 0, this will give an estimate of the fundamental
frequency from ω0 = 2E/h̄. The value obtained is ω0 = 6.4 meV which agrees well with the
experimentally determined frequency of the T mode [12] (6 meV). Note that by calculating
energy differences at different values of n in (3.14), we could also obtain an estimate of the
anharmonicity fitting the potential along the x- or y-directions to a first-order anharmonic
expansion. Although experimental measurements of anharmonicity have not been reported
for this problem, such simple models have been shown to work well for adsorption of CO on
a Cu(001) surface [31].

For all of the three periodic motions, the trace of their monodromy matrices has been
followed with change in energy in order to detect their bifurcations and changes of stability.
This is shown in figure 4. For the circular orbit, figure 4(a), the opening of energetic barriers
(indicated by arrows) does not seem to significantly affect its stability. Indeed, the orbit is quite
stable (solid curve) until E ∼ 101 meV where it suddenly undergoes a series of bifurcations of
increasing periods. At E > 101.6 meV, |Tr M1| = 2 and this orbit disappears or becomes very
unstable. No more stable localized motions inside a potential well are visible at higher energies.
This is intuitively expected, since localization is exclusively due to the effect of the potential
wells and as we increase the energy the trajectories should follow straighter paths. However,
it is interesting to see that at about 15 meV above Emax , localized motions are still stable.

For the straight motions along the x-, y-, or diagonal directions (figures 4(b) and (c),
respectively), the opening of energetic barriers changes their character from localized to dif-
fusing, although the topology of the orbit remains the same. For the motion along the [11̄0] and
[110] azimuths, the orbit is localized and stable until E = Es , where it becomes a free drifting
motion. This change in the PES leads to an abrupt bifurcation (marked with an arrow in fig-
ure 4(b)) and the sudden onset of an infinite sequence of periodic orbits of all periods as the trace
of the stability matrix approaches the value 2 (see equation (3.13)). Diffusing orbits along the
x- or y-directions with all possible periods are created. Because the main orbit remains stable,
an island-around-island structure is expected in the Poincaré surface of section, shown in part
in figure 5—that is, a hierarchy of island chains of increasing resonant frequencies. This will
give rise to a self-similar hierarchy of nested cantori in phase space [11]. These objects, which
have the same fractal structure of a Cantor set, were first described by Percival and Aubry [32,
33], and form partial barriers for the flux of trajectories through phase space. This means that a
general chaotic trajectory will be trapped for long times around this hierarchy of cantori, which
induce long jumps along x- and y-directions. After the transition region of abrupt bifurcation,
the main orbit continues to be stable until E = 89.7 meV, where it suffers a period-doubling
bifurcation. Between this energy and E = 110 meV it remains unstable, and no stable drifting
motions are seen to occur in the Poincaré surface of section; see figure 6. Above 110 meV it
again becomes stable and remains so, as expected from the approach to the integrable limit.

For the diagonal motion along the [100] azimuth (figure 4(c)) a similar situation is ex-
pected, the difference being that, due to the non-separability of the term for the potential
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Figure 4. The trace of the stability matrix of the principal
motions as a function of the energy. (a) Circular orbit. A
sequence of bifurcations (from period doubling at Tr M = −2
up to period 15) are marked with solid thin lines. The arrows
indicate the opening of energetic barriers (Es = 74.6 and
Emax = 85.5). (b) Parallel drifting motion. The energy of
the saddle point along x or y, Es , is marked with an arrow. (c)
Diagonal diffusive motion. The arrow points to the energy of the
on-top saddles at 84.49 meV. In all of them the stable orbits are
plotted as solid curves and the unstable ones as dashed curves.

V2(x, y) around the minima, the motion is highly non-linear in the diagonal direction and the
orbit is unstable. The interesting point is that, when the energetic barrier is open for this orbit
to diffuse (at E = 84.5 meV), it coalesces with an orbit of the same topology originating at the
small minima of the on-top sites and which in this case is stable. The abrupt bifurcation giving
rise to drifting diagonal motions of all periods is seen again, and the main diagonal orbit is
stabilized by the minima, so for 87.8 meV � E � 97.5 meV it is stable, and then becomes un-
stable until, at E > 150 meV, it starts approaching the integrable limit. The stabilization of this
diagonal motion will give rise to long jumps along the [100] and [010] azimuths, and this is con-
sistent with the experimental observation that a high number of diffusing paths also exist along
this direction, in addition to the paths across the saddle points along [110] or [11̄0] azimuths.

We note that inside the small potential wells at the on-top sites, the same three periodic
motions described above are present, but now the parallel frustrated modes are unstable and
the diagonal ones are stable. The rotational frustrated motion is also stable only for energies
below the on-top maxima (between 82.74 and 85.51 meV). When this barrier is opened the
motion turns unstable—opposite to what happened in the potential wells at the hollow sites.
By semiclassically quantizing the (stable) diagonal periodic motion, we obtain a fundamental
frequency ω

top

0 ∼ 2.4 meV. Although for the present system the experimental results do not
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Figure 5. The Poincaré surface of section for x = a/2 and E = 84 meV, illustrating the island-
around-island structure of the main parallel diffusing orbit. The inset shows some magnified island
chains from the squared region.

Figure 6. The Poincaré surface of section for x0 = a/2
and E = 100 meV (no localized orbits can be shown
when choosing this value of x0 for the surface of section).

enable us to reach a conclusion about the existence of on-top site adsorption, it is intriguing to
see that a weaker mode at approximately half the frequency of the T mode has been reported
by Ellis and Toennies [13]. Indeed, there have been observations of stable on-top bound states
for potassium on Cu(111) and Ni(111) [34].

4. Normal transport

In the previous section we briefly discussed how the classical dynamics can generate a
probability density in phase space and thus could serve as a basis for the definition of
statistical ensembles. The time evolution of the probability density is governed by the Liouville
equation (3.4), while the evolution of a general dynamical variable A, which is a function of
the phase-space point at any time, is given by an analogous equation [35]:

∂

∂t
A(x(t)) = −L̂A(x(t)), (4.1)
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where the Liouville operator is L̂ = −∇(F (x) · ). In order to obtain a macroscopic quantity
as given from experiment, one should make a coarse graining in time, or a time average
of the dynamical variable of interest, 〈A〉 = limτ→∞(1/τ)

∫ τ

0 A(x(t)) dt . When only the
deterministic equations of motion are considered, it is the intrinsic dynamical instability
or chaos that, under certain conditions, makes the time averages equivalent to phase-space
averages (ergodic hypothesis) and justifies the calculation of thermodynamic properties, for
instance, by molecular dynamics simulations [36]. However, when discussing transport
properties, the relevant question is that of the decay of correlation functions with time,
since the ordinary link between Liouvillian dynamics and transport coefficients is given by
Green–Kubo relations. Ergodicity, though an important condition, is not very useful since no
timescale can be defined using this property alone. Again, it is the dynamical instability which
establishes intrinsic relaxation times of the correlation functions and allows one to obtain
transport coefficients from it. Time correlation functions are also of experimental relevance
since the spectra measured by various spectroscopic techniques are the power spectra of well-
defined dynamical variables A.

Since the theory of transport processes, such as atomic surface diffusion, is very much
related to the theory of stochastic processes and Brownian motion, here we will give a short
account of it, emphasizing the main approximations that allow one to treat physical processes
as stochastic processes. Then we will particularize the formalism to the case of diffusion of
atoms on metal surfaces, and will establish a link between quantities that one can observe
from experiments and those attainable from the chaotic dynamics, with application to the
Na/Cu(001) system.

4.1. Generalities about Brownian motion

When discussing dynamics, both length scales and timescales need to be simultaneously
considered. Typically wavelengths are compared with the mean free path, l̄, and times with
the mean collision time, τc. In this way, the dispersion (wavenumber–frequency) plane can
be divided into three regions corresponding to the following three regimes: the hydrodynamic
regime, kl̄ 	 1, ωτc 	 1; the kinetic regime, kl̄ ∼ 1, ωτc ∼ 1; and the free-particle regime,
kl̄ 
 1, ωτc 
 1. In the first regime, macroscopic equations of motion of dynamical variables
are required, whereas in the second regime, the microscopic level of equations of motion of
such variables is studied. When we want to bridge between the microscopic and macroscopic
worlds, we need first to clarify the relationship between the two types of dynamical variables.
To this end, a ‘coarse-graining’ procedure has to be carried out. Thus, for example, the
difference between the microscopic particle density and the hydrodynamic local density relies
on the fact that the second is obtained by averaging the first over both a volume, which is
macroscopically small but still sufficiently large to ensure that the relative fluctuation in the
number of particles is negligible, and a time interval that is short on a macroscopic scale but
long in comparison with τc. After that smoothing step is complete, the regression hypothesis
due to Onsager [37], which can be justified on the basis of the linear response theory by means
of the fluctuation-dissipation theorem [38], comes to nicely and linearly connect both worlds.
In very simple words, such a hypothesis states that the relaxation of macroscopic systems not
far from equilibrium is governed by the same laws as the regression of spontaneous microscopic
fluctuations in an equilibrium system. This hypothesis provides, for example, a method for
computing rate constants from microscopic laws. Once we have made such assumptions, we
can formally start with the microscopic expressions for the transport coefficients in terms of
the correlation functions, and then suppose that the correlation functions derived from the
hydrodynamic equations are identical to those [35].
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In a similar vein, the stochasticization or randomization of a general, physical process
is carried out by some sort of coarse graining in space as well as in time. The degree of
crudeness required by stochasticization is directly related to the degree of precision required
for spatial and temporal measurements of dynamical variables. A stochastic physical process
is called Markovian if its time evolution is determined by the present and not its past; it
loses all memory of its past. As a consequence, Markovian laws of motion are differential
equations which are first order with respect to time. Retardation effects and non-locality
properties are then not taken into account. Furthermore, rate constants are defined in the
Markov approximation within the master equation formalism but not in its generalized version
where explicit memory functions are included. The paradigm of physical stochastic processes
is the Brownian motion. The random-walk problem is often considered as a model for such a
motion [39]. The Brownian motion is Markovian as well as Gaussian since the central-limit
theorem applies for a sufficiently long time, at least greater than the correlation time of the
system losing the memory of its initial conditions. If the number of particles is not too high and
interactions between them can be ignored, Brownian particles are governed by the standard
diffusion equation. The mean time, τc, between collisions of the Brownian particle and the
surrounding medium has to be of the same order of magnitude or even slightly shorter than
the average period of the fluctuating force in the surrounding medium.

A Brownian particle also satisfies a dynamical equation of the form (3.1), namely

ẋ = u(t) (4.2)

where now the velocities u(t) and derived positions x are stochastic, rather than deterministic.
Let us consider again a microscopic probability density ρ(x, t) giving the probability that the
Brownian particle is at time t in the configuration-space volume dx. By invoking conservation
of probability, the density ρ(x, t) is shown to obey a stochastic Liouville equation [40] of the
form (3.4), namely

∂tρ(x, t) = L̂ρ(x, t) (4.3)

where the differential operator L̂ = −∇·[u(t)·] is a stochastic operator since u(t) is stochastic.
In the reciprocal space, the above equation becomes

∂tρ(k, t) = −ik · uρ(k, t) (4.4)

where ρ(k, t) is the Fourier transform of ρ(x, t). The solution of (4.4) for a given sample
process u(t) is now

ρ(k, t) = ρ(k, 0) exp

[
−i

∫ t

0
k · u(t ′) dt ′

]
. (4.5)

Since u(t) is stochastic, we have to consider all the possibilities for it, and the probability
distribution in Fourier space is given by averaging over all possible paths:

I (k, t) = 〈ρ(k, t)ρ(k, 0)〉 ∝
〈
exp

(
−i

∫ t

0
k · u(t ′) dt ′

)〉
. (4.6)

This is the definition of the characteristic function for the stochastic variable x(t) [41].
Assuming that x(t) is Gaussian, the above equation can be expressed as [38]

I (k, t) = exp

[
−k2〈u2

k〉
∫ t

0
(t − τ)φ(τ) dτ

]
(4.7)

where φ(τ) is the normalized velocity autocorrelation function and uk stands for the velocity
vector projected along k. According to the discussion above, in order for the motion of the
physical particle to behave as a Gaussian and Markovian process, a coarse graining in time
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should be imposed, by taking the long-time limit. At long times, i.e., times longer than the
mean collision time defined as

τc =
∫ ∞

0
φ(τ) dτ, (4.8)

equation (4.7) is approximated by

I (k, t) ∼ exp[−k2〈u2
k〉τct + δ] (4.9)

with δ = k2
∫ ∞

0 τφ(τ) dτ . This function is the solution of the differential equation

∂t I (k, t) = −〈u2
k〉τck

2I (k, t), (4.10)

that, on Fourier transforming back to real space, gives the standard diffusion equation

∂tP (x, t) = D ∇2P(x, t) (4.11)

with

D = τc〈u2
k〉 (4.12)

and P(x, t) the normalized autocorrelation function of the microscopic number density ρ(x, t)

with the initial condition

P(x, 0) = δ(x − x0). (4.13)

4.2. Diffusion of adatoms on surfaces; scattering formalism

The theory behind QHAS experimental techniques is based on van Hove’s formalism for
quasielastic neutron scattering, for studying diffusion in the bulk [42]. This theory can be
generalized to surface diffusion with some particularities. First, the substrate is usually
assumed to be a perfect, periodic lattice. Second, adatoms are supposed to behave like
Brownian particles. Third, diffusion is usually thermally activated, the diffusion barrier energy
being a factor between 3 and 5 less than the binding energy and smaller than the thermal energy
of adatoms; the hopping time is considered infinitesimally small. Fourth, the vibrational and
diffusional motions of adsorbates are assumed to be decoupled although it is well known that
vibrations can actually assist the diffusion process. And fifth, depending on the magnitude of
the wavevectors involved, the lattice structure becomes important or not and different diffusion
models can be conceived of. Thus, if only small wavenumbers are considered—that is, long
wavelengths—a continuous diffusion model is applied. In contrast, at short wavelengths, jump
diffusion models are used within the master equation formalism.

In analogy with the theory of liquids, the ensemble of diffusing classical particles on the
surface is described by a time-dependent pair correlation function, G(x, t), whose Fourier
transform in space and time, called the dynamic structure factor, is directly accessible by
scattering experiments. This G-function, introduced originally by van Hove, is defined as the
ensemble-averaged probability density of finding an adparticle at the surface position x at time
t , given that an adparticle was at the origin at some arbitrary time t = 0. If the local adsorbate
number density is given by ρ(x, t), then the normalized G-function or van Hove function can
be expressed as

G(x, t) = 〈ρ(x, t)ρ(0, 0)〉
〈ρ(x)〉 . (4.14)

At low adparticle concentrations, when interactions between adsorbates can be ignored, such
a function is only described by the so-called ‘self’-part—that is, the dynamics for a single
diffusing adparticle G(x, t) ≡ Gs(x, t), and no ambiguity is introduced if the subscript s is
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removed from now on. Strictly speaking, the G-function separates naturally into two terms
called the ‘self’-part and the ‘distinct’ part, the first being simpler to calculate than the second.
Many efforts have been addressed to relating the two kinds of magnitude, the first one being
the so-called convolution approximation due to Vineyard from 1958 [43]. Now it is clear
that within classical mechanics, the time-dependent pair correlation self-function G(x, t) has
the same physical meaning as the averaged probability density P(x, t) above, and when x(t)

is considered as Gaussian it satisfies (4.7) with its spatial Fourier transform I (k, t), in this
context known as the intermediate-scattering function.

As mentioned before, experimental information of the diffusing adparticles can be
extracted from scattering experiments. Rather than neutron scattering, helium-atom scattering
is preferred due to the fact that large cross sections (larger than in the gas phase) of adparticles
are found although the experimental procedures are very similar. Additional advantages and
disadvantages of this technique can be found elsewhere [3, 44].

There has been a great deal of argument about the requirements for the probe particles
to provide unaffected time-dependent pair correlation functions. Generally speaking, the
scattering particles should spend at least a time of order of the relaxation time of such correlation
functions. In particular, it has been shown that He atoms from a room temperature source fulfil
such requirements (velocities <3 × 103 m s−1). The quantity measured in the quasielastic
experiment is the differential reflection probability (the probability of a projectile helium
atom being scattered from the diffusing collective into a certain solid angle � with an energy
exchange h̄ω) which is given by the following expression [3, 45]:

d2R(K, ω)

d� dω
= ndF

2
∫ ∫

G(R, t)ei(K·R−ωt) dR dt = ndF
2S(K, ω) (4.15)

where K is the wavevector transfer parallel to the surface, R the coordinate parallel to the
surface, nd the diffusing particle concentration on the surface, and F the atomic form factor
depending on the potential of the interaction between the projectiles and the adparticles.
Scattering at small wavevector transfers provides information on large-distance correlations
and, analogously, events with small energy transfers provide information on long-time
correlations which contribute to the quasielastic intensity peak.

In the discussion so far on the diffusion process, no interaction potential between the
substrate and the adsorbates has been considered. In other words, the diffusive motion is purely
Brownian and is thought to be uncorrelated with the vibrational motion of the adsorbates. It
is however well known that the former can be assisted by the latter. In principle, different
length scales and timescales are involved in the two motions; vibrations are localized inside
adsorption potential minima with high frequencies, and diffusion proceeds by jumping from
one adsorption site to another between neighbours or even more distant ones. Obviously,
under certain conditions, the two motions become more and more coupled. For example,
temperatures higher than the diffusion barrier diminish the time spent by adatoms in an
adsorption site and large friction coefficients can lead to jump distances of the order of
the substrate lattice spacing. The work by Chen and Ying [13] can be considered as a first
theoretical attempt to treat the two motions on an equal footing.

According to the above arguments, the dynamic structure factor in (4.15) will consist of
several peaks: the quasielastic peak around ω = 0 and several inelastic peaks due to adsorbate
vibrations of low frequency, for the creation (ω < 0) and annihilation (ω > 0) events. Thus,
if no correlation between the rapid motion due to vibrations and the slow diffusional motion
exists, the G-function can be written as the convolution of the two contributions and therefore,
by the convolution theorem, the total intermediate-scattering function will be the product of
two Fourier transforms in space, one coming from vibration and the other from diffusion.
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The total dynamic structure factor can then be expressed as the convolution in the frequency
variable of the corresponding two dynamic structure factors. By considering the quasielastic
(zero-phonon) and (one-phonon) inelastic contributions, the total dynamic structure factor can
be expressed as a sum, each term coming from a decoupled motion. If the two motions are
coupled (for example, by increasing the surface temperature), diffusion will be assisted by
vibrations which will contribute to the quasielastic peak, and the corresponding sum is no
longer valid. However, if the temperature is higher than the diffusion barrier, no detectable
trace of vibrations is expected and only a broad quasielastic peak will be observed. The analysis
of the line shape of the quasielastic peak is left to the next subsection.

4.3. Diffusional line shapes; sources of broadening

From an experimental point of view, natural line shapes corresponding to the smallest
possible linewidths cannot be observed without special techniques because they are completely
concealed by other broadening effects. Convolution techniques need to be applied. In
damping processes, the existence of alternative relaxation channels shortens the lifetime of
the corresponding process and therefore results in line broadening. In general, we have two
types of broadening, homogeneous and inhomogeneous. The first one occurs when all the
systems are in the same initial state and leads typically to Lorentzian line shapes. In contrast,
the inhomogeneous broadening takes place when each system is in a different initial state,
leading usually to Gaussian line shapes with a width many times greater than a Lorentzian one.
This broadening consists of a superposition of many individual, homogeneous broadened lines
which merge into a single broadened line. Globally, two kinds of relaxation are important:
population and phase. Population decay constants are associated with the lifetimes of the
system states—and the so-called dephasing constant is related to the process disturbing the
phase of the wavefunction—but do not alter the population of the states. An anharmonic
dephasing will occur when the surface temperature is comparable to the barrier height and, if it
is much smaller, frictional coupling with substrate excitations becomes the dominant dephasing
factor (anharmonic broadening).

As discussed in the preceding subsection, the relevant correlation function is the
autocorrelation of the microscopic number density in reciprocal space, equation (4.6).
According to the Wiener–Khintchine theorem, its power spectrum is given by

S(K, ω) = 1

2π

∫ ∞

−∞
e−iωt I (K, t) dt (4.16)

which is the dynamic structure factor. From the long-time approximation equation (4.9), a
Lorentzian form for S(K, ω) is readily obtained:

S(K, ω) ∝ |K|2D
ω2 + |K|4D2

(4.17)

identifying D as in equation (4.12). Of course this form is also obtained by solving the ordinary
diffusion equation (4.11) and then Fourier transforming in time and space.

It is interesting to consider the behaviour of the intermediate-scattering function I (K, t)

for the whole range of times [38]. According to the Doob’s theorem, if a stationary process
is Gaussian and Markovian, its correlation function decays exponentially in time. Thus the
velocity autocorrelation function can be simply expressed as

φ(τ) = e−t/τc (4.18)
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with τc the mean collision time, equation (4.8). Therefore the intermediate-scattering function
given by equation (4.7) can be expressed as

I (K, t) = exp

[
−χ2

(
e−t/τc +

t

τc

− 1

)]
(4.19)

with

χ = τc

√
〈u2〉|K| ≡ |K|l̄ (4.20)

a critical parameter governing, as we will see, the dynamical coherence of the diffusion process.
Here l̄ is the mean free path.

It is clear from a close inspection of equation (4.19) that, depending on the χ -values,
the intermediate-scattering function can be approximated by different exponential functions.
Thus, for example, when χ → ∞ or, equivalently, τc → ∞ or l̄ → ∞, we obtain a Gaussian
function (short-time approximation, t 	 τc) as

I (K, t) ≈ e−〈u2〉|K|2t2/4 (4.21)

and the corresponding dynamic structure factor has a Gaussian shape:

S(K, ω) ∼ 1

|K|u0
exp[−ω2/|K|2u2

0] (4.22)

with the mean velocity u0 =
√

〈u2〉. The physical meaning of this is clear; one realizes that
this corresponds to a van Hove function of the form

G(R, t) ∼ 1

u0t
exp[−R2/(t2u2

0)] (4.23)

which is the probability for the particle to be displaced by R in a time t assuming a
constant velocity R/t and an initial Maxwell–Boltzmann distribution of velocities, with
u0 = √

2kBT /m. This means that for times much shorter than the mean collision time,
the particle behaves almost as if it is free, and dynamical coherence dominates.

In the opposite case, χ 	 1, we recover the long-time approximation (4.9) and the
spectrum has the Lorentzian shape (4.17), with the obvious meaning that correlation among
the different velocities is completely lost and the process is purely diffusive.

Fourier transformation of (4.19) for all ranges of time leads to Gamma and incomplete
Gamma functions as follows:

S(K, ω) = τceχ2

π
χ−2χ2

[


(
χ2 + i

ω

γ

)
− 

(
χ2 + i

ω

γ
, χ2

)]
(4.24)

where, as the value of the parameter χ decreases, the dynamic structure factor goes from a
nearly Gaussian to a Lorentzian line shape and the spectrum becomes narrower and narrower.
This effect is called motional narrowing [46]. Not only can the spectrum or dynamic structure
factor as a whole be approximated by one of these shapes depending on the value of χ ,
but also—by the general property of the Fourier transform—we see that around ω = 0, the
behaviour of S(K, ω) is governed by the asymptotic behaviour of φ(t) for large t , and for large
ω by that of φ(t) for small t . Therefore, the shape of the quasielastic peak at the centre will
be close to Lorentzian while the wings are close to a Gaussian form. Alternatively, from an
experimental point of view, what can also be varied is the magnitude of K through the initial
conditions of the atomic beam (incident energy and angle) and therefore again the χ -value.
Thus, a change of shape is observed when decreasing the |K| values. Moreover, when |K| is
very large, we have another source of ‘non-Lorentzianity’, due to the fact that vibrations begin
to play an important role in the diffusion process.

Finally, the true line shape observed has to be a convolution of the response function of
the detector and the line shape (from Gaussian to Lorentzian) due to diffusional motion. In
the long-time approximation, the resulting convolution function is called the Voigt profile.
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4.4. The Langevin and Kramers equations; first-passage-time distribution

In order to consider the motion of the physical particle as a stochastic process, not only a coarse
graining in time similar to the one performed to obtain equation (4.11) from (4.7), but also a
coarse graining in space is necessary. This is naturally accounted for in the Langevin description
of Brownian motion. The dynamical system of interest is usually characterized by a small
number of degrees of freedom, while the reservoir or heat bath is a large, complex system with
many (possibly an infinite number of) degrees of freedom. Then, the degrees of freedom of the
reservoir are masked from observation by additional assumptions, basically that the relaxation
or damping time governing the rate at which the dynamical system approaches equilibrium
(steady state) with the reservoir is much larger than the reservoir fluctuation correlation time.
Moreover, the interaction time is considered instantaneously short compared to the time of
change of a given system property. Therefore the effect of the reservoir is only considered
through a randomly fluctuating force which, according to the fluctuation-dissipation theorem,
determines also the damping of the system due to friction. The equation of motion for the
Brownian particle is then assumed to be

mR̈ = −∇RV (R) − ηṘ + Fr(t) (4.25)

where m is the mass of the adparticles, V the adiabatic adsorption potential, γ = η/m the
friction coefficient, and Fr a random fluctuating force with zero mean and delta correlated in
time; that is,

〈Fr(t) · Fr(t
′)〉 = 2mγkBT δ(t − t ′). (4.26)

This force is also supposed to be uncorrelated with the velocity:

〈Fr(t) · Ṙ(t ′)〉 = 0. (4.27)

A random force with the Dirac δ-correlation is called white noise since its spectral distribution
is independent of the frequency. Otherwise, it is called coloured noise.

The rigorous theoretical basis for simplifying the equations of motion by removing the
rapidly varying degrees of freedom of the environment is due to Zwanzig [47] and Mori [48],
and it is known as the projection operator formalism. In atom–surface diffusion, this formalism
can be equally well applied by considering the Hamiltonian for the phonon bath [49]. A
Gaussian white noise then corresponds to dynamical incoherence of the surface phonons.

By solving the Langevin equation numerically, one can obtain the individual Brownian
trajectories for the adparticles. The relevant correlation functions are calculated by averaging
over stochastic paths and time. The dynamic structure factor can be calculated from
equations (4.6) and (4.16). Other quantities of interest, also related to the diffusion coefficient,
are the MSD given by the Einstein relation:

D = lim
t→∞

1

4t
〈|R(t) − R(0)|2〉, (4.28)

and the velocity power spectrum

Z(ω) =
∫ ∞

−∞
〈u(t) · u(0)〉e−iωt dt (4.29)

which gives D in the limit of small frequencies:

D = 1
2Z(ω = 0), (4.30)

since when the diffusion is normal, Z(ω) converges to a finite value as ω → 0. We note also
that the power spectrum is related to the dynamic structure factor by [35]

Z(ω) = ω2 lim
K→0

S(K, ω)

K2
. (4.31)
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When K → 0, S(K, ω) is adequately described by the Lorentzian form (4.17) and, substituting
in (4.31), we recover the previous equation (4.30).

As stated earlier, a totally equivalent and complementary approach to the Langevin
treatment of diffusion problems is the FP formalism. The FP equation is just an equation
of motion for the distribution function of fluctuating, continuous macroscopic variables. From
distributions functions, any average value of macroscopic variables is easily obtained by
integration. Such an equation is not restricted to systems near thermal equilibrium; it could
even be applied to systems far from equilibrium. The Klein–Kramers or Kramers (KK) [5] as
well as the Smoluchowski [50] equations are special forms of the FP equation. The former is an
equation of motion for the distribution function in the position and velocity space, W(R, u, t),
which describes Brownian particles in an external field. The KK equation corresponding to
the stochastic differential equation (4.25) has the form

∂tW =
2∑

i=1

[−∂xi
ui + ∂ui

(γ ui + ∂xi
V ) + γ u2

0 ∂2
uiuj

]W (4.32)

with R = (x1, x2) and u = (u1, u2), u0 = √
2kBT /m, the thermal velocity. Analytical and

numerical methods for solving the KK as well as FP equations can be found elsewhere [50].
The stationary solution of this equation is the Boltzmann distribution as required by equilibrium
statistical mechanics. For large damping constants, the KK equation reduces to the
Smoluchowski equation represented only in the position space. The KK equation approach
has also been applied to atom–surface diffusion problems by several groups using one- and
two-dimensional periodic potentials [16, 51].

The first-passage time (FPT) is the time at which a stochastic variable first leaves a given
domain [50]. The FPT variable is also a stochastic variable because depends on each realization.
There is special interest in the first moment of the FPT, the mean first-passage-time (MFPT)
value. The well-known Kramers result on reaction rates [5] (Arrhenius behaviour) is considered
as the first application of the MFPT. Transition rates or attempt frequencies are just the inverses
of escape times or MFPT.

4.5. Normal deterministic transport in the Na/Cu system

An analysis of the influence of the simplest periodic motions on the short-time dynamics has
been carried out in section 3.2 through semiclassical quantization of the main periodic orbits.
They gave us an estimation of the frustrated translational motion frequency extracted from
the experimental dynamic structure factors. We will see how their stabilities affect the long-
time dynamics, at energies above the saddle-point barrier of the potential—in particular, the
asymptotics for MSDs and power spectra, which for the case of normal diffusion is directly
related to the diffusion coefficient.

As was said before, one expects a usual diffusive behaviour if the phase space is sufficiently
chaotic. At energies far away from the abrupt bifurcations suffered by the diagonal and parallel
diffusive orbits, but still not so high that the trivial integrable limit is attained, we have instability
of the main periodic drifting motions; see figures 4 and 6. This will happen for energies between
90 and 110 meV. A typical chaotic trajectory is depicted in figure 7 for very long times, showing
a very similar behaviour to that of a usual random walk: short jumps between different unit cells
separated by small localization periods inside a cell. That is, average jump lengths between sites
and mean waiting times inside a site are finite. In figure 8 we show the power spectrum, equa-
tion (4.29), and the MSD, numerically calculated, propagating an ensemble of initial conditions
(typically between 100 and 1000 trajectories) randomly chosen in the chaotic region of figure 6.
We see that as ω → 0 it converges to the constant value 2D, equation (4.30), while the MSD
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Figure 8. The velocity power spectrum at E = 100 meV.
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Figure 9. Dynamic structure factors obtained from a
microcanonical ensemble of trajectories at E = 100 meV,
using equations (4.6) and (4.16). Solid curve: K =
0.14 Å−1. Dashed curve magnified by 8.

Figure 10. The integrated jump length distribution (solid
curve) and the time-of-flight distribution (dashed curve)
at E = 100 meV.

is linear in time according to the Einstein relation (4.28). The physical meaning of this is that
the (deterministic) positions, or velocities, can be considered as Gaussian stochastic variables.

The analysis of the diffusional line shapes (quasielastic peak) of section 4.3 is also
applicable to the dynamic structure factors obtained from the chaotic dynamics. In figure 9
we show S(K, ω), equation (4.16), at two different values of the momentum transfer K. At
very small K (solid curve), we have a narrow quasielastic peak at ω = 0 with a Lorentzian
shape, due to the diffusional chaotic motion at long times and long mean free paths. At a
value of K large enough that the maximum mean free path detected is less than one unit-cell
length (dashed curve), no diffusional peak is observed, but instead the first and second inelastic
excitations due to the adsorbate vibrations (T mode) are clearly visible. This could be a way
to observe motional narrowing.

Let us now consider the distances along x- or y-directions travelled in a jump between
different unit cells as a random variable, and calculate its distribution function φ(l). Jump
length distributions are quantities of interest since they give an idea of the type of diffusing
mechanism and friction regime [16, 51, 52], and sometimes they can be extracted from
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experiment [18,53,54]. Moreover, they provide insight into the nature of the stochastic process,
as we will see later. To numerically calculate jump length distributions in the Na/Cu system,
we have used several methods and obtained equivalent results [28]. At energies below Emax

(the on-top potential energy maxima), the potential barriers constrain the diffusive motion
to the x- or y-directions, and we can define the beginning of a jump in x or y as when a
trajectory crosses the activation barrier along one of these directions, the jump finishing when
the momentum in this direction is reversed. Between two jumps, generally there is a waiting
time inside a given unit cell where the trajectory executes chaotic motion and loses memory of
the initial conditions; therefore two consecutive jumps are statistically independent. Note that,
due to the symmetry of the PES, the jump distributions along x and y are identical. At higher
energies, the particle can move freely along any direction and the criterion for the termination
of a free jump is not so clear. We have found a more convenient way to count jumps: by
calculating the Gaussian curvature at every integration step of a trajectory defined as

κ = |ẋÿ − ẍẏ|
(ẋ2 + ẏ2)3/2

(4.33)

and the end (beginning) of a jump is considered to be the point of the trajectory where the
radius of curvature, κ−1, is less than some critical value chosen empirically.

The curvature criterion was proposed by Sholl and Skodje [55] in their investigation of
Lévy flights in the Xe/Pt diffusion system. At energies below the top of the hill, for instance, we
have found identical jump distributions φ(l) by using the first criterion of momentum change
and the curvature criterion with the choice κ−1 = 0.15 a0.

To obtain good statistics it is better to calculate the integrated jump distribution [56] as

φ̄(l) =
∫ ∞

l

φ(l′) dl′ (4.34)

and the corresponding φ(l) is obtained by differentiation of φ̄(l). In figure 10 we present
the integrated jump length probabilities (using as discrete jump length l, the number of unit
cells traversed in the jump) for the normal diffusive regime, showing the typical exponential
decay expected from the central-limit theorem (since the stochastic variable x, which can
be considered as the sum of successive jumps, is Gaussian, the individual jump distributions
ought to decay exponentially). The distribution of jump duration times considered as a random
variable is also plotted as a dashed line, showing the same behaviour.

We have found numerically normal diffusive transport up to energies slightly above
120 meV. From figure 4, we see that the main parallel periodic orbit again becomes stable
at E ∼ 110 meV. The influence of this change of stability can be traced by relating the mi-
crocanonical diffusion coefficient to average jump lengths using some approximate statistical
theories for the diffusion coefficient [28]. For instance, for extremely mobile adatoms we can
use the kinetic theory of gases [2] to express the diffusion coefficient as

D(E) = 1
2 〈u〉l̄ (4.35)

where 〈u〉 is the average velocity and l̄ is the mean free path. Correlations due to long flights
are manifested as anomalous high values for l̄. Another approximate expression for the mi-
crocanonical diffusion coefficient comes from the generalization of the simple random-walk
picture to a random-flight formalism [39, 55] which in our case gives

D(E) = 1
2ν〈l2〉 (4.36)

where ν is the frequency of flights and 〈l2〉 the average squared length of the jumps. The
frequency ν can be computed as the total number of flights containing a non-zero number of
barrier crossings, divided by the total time. This model assumes that successive flights are
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Figure 11. Microcanonical diffusion coefficients for an energy range between 95 and 120 meV.
Solid curve: the exact diffusion coefficient from a fitting to the Einstein relations using
microcanonical ensembles. Dashed curve: the approximation from the kinetic theory of gases
equation (4.35). Dot–dashed curve: the random-flight approximation equation (4.36).

uncorrelated. If the jumps consist of only single hops, one should obviously have 〈l2〉 = a2.
In figure 11 we plot the exact microcanonical diffusion coefficient obtained from molecular
dynamics simulations using the Einstein formula (4.28) (or analogously (4.30)), versus the two
approximations, equations (4.35) and (4.36). It is seen that around E = 110 meV the Einstein
diffusion coefficient increases abruptly, due to the stabilization of the main parallel diffusing
orbit. Although the two approximations used overestimate the diffusion coefficient at low en-
ergies, it is observed that the same qualitative feature is present in both models—that is, a more
or less pronounced increase of the diffusion constant around 110 meV. In both approximations
this is due to the increase in the jump length caused by the diffusing periodic orbit.

5. Anomalous transport

5.1. Description of anomalous diffusion

Transport processes of particles with MSDs violating Einstein’s law for Brownian motion,
equation (4.28), are generically called anomalous diffusion processes. This law is replaced by
the more general form

〈|x(t) − x(0)|2〉 ∼ Dδt
δ (5.1)

with δ < 1 (subdiffusion) or δ > 1 (enhanced diffusion or superdiffusion) describing diffusion
processes slower or faster than ordinary Brownian motion. Anomalous diffusion has been
known since Richardson’s 1926 work [57] on turbulence (where he found δ = 3 in (5.1)).
Its study within transport theory of stochastic processes began in the late 1960s, promoted by
the investigation of transport in amorphous semiconductors, a system where the traditional
Brownian description of random walks failed [58]. Since then, experimental realizations
of anomalous diffusion have been demonstrated for a large number of processes, among
them transport of electrons in semiconductor microstructures [59], dynamics of polymeric
systems [60], bacterial motion [61], rotating flows [62], and diffusion of adsorbed molecules
at liquid–solid and liquid–liquid interfaces [63], to name just a few. A more extensive list of
references can be found in a recent review [64].
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Anomalous transport has been described within many different statistical frameworks.
Simple (but with non-Brownian features) random-walk models accounted well for the first
observations of anomalous diffusion [58, 65, 66]. These models also provide an intuitive
physical picture of such a process: superdiffusion is originated by anomalously long jumps
of a random walker (known as Lévy walks [67–69]) while subdiffusion can be associated
with unusually long waiting times between successive walks [64, 70, 71]. Subdiffusive
processes are usually modelled by a continuous-time random walk (CTRW) with a fractal
distribution of waiting times, and therefore are also called ‘fractal time’ processes. In this
review we will focus on superdiffusion, but we emphasize that both anomalous regimes
can be described within the CTRW formalism [66, 72] and that the existence of Lévy or
stable probability distributions [69, 73] is central to the explanation of general anomalous
diffusion processes. We shall consider these models in detail in section 5.2. Additional
statistical frameworks employed for the modelling of anomalous transport include Langevin
equation approaches [74–78], FP equation description via fractional derivatives [64, 79, 80],
and generalized thermostatistics [81, 82], as well as combined approaches.

Our next goal will be to identify deterministic diffusion mechanisms and to model them
with simple random walkers, taking into account the information about the phase-space struc-
ture obtained from section 3. We will show that, when anomalous diffusion is present, the
behaviour of some observable quantities such as velocity power spectra, dynamic structure
factors, and mean first-passage times is significantly different from the normal diffusive case.
In the rest of this section, we will particularize our treatment to a one-dimensional case in
order to simplify the notation, but the relevant equations can be straightforwardly extended to
higher dimensions.

5.2. Lévy walks and chaotic dynamics

From the results presented in section 4.5, it is clear that the chaotic dynamics can by itself mimic
the behaviour of a stochastic system without the need to introduce any internal or external noise
source. It has been widely shown that an unbound deterministic dynamical system with the
ergodic property can be described by a usual diffusion equation [83] and thus can exhibit
a normal diffusive behaviour. More interesting, because of its generality, is the case of a
dynamical system with a mixed phase space—that is, with coexistence of regular and chaotic
regions. Inside a chaotic region the ergodic property is expected to be approximately valid, but
the existence of stability islands can subtly change the statistical properties of the system. In
particular, the island structure can also induce anomalous transport under some circumstances.

Anomalous diffusion in two-dimensional Hamiltonian systems was studied some time ago
in a model potential [56, 84]. There the existence of Lévy distributions of jump lengths was
shown to be crucial for the explanation of this anomalous behaviour. We will apply the same
analysis to the Na/Cu(001) system and exploit our knowledge of the phase-space structure to
obtain a deeper insight on how Lévy walks appear in a non-separable periodic potential.

Lévy walks and Lévy flights are by now well established and widely used concepts in
statistical physics [67]. The term Lévy flight is used to indicate a random walk in a continuous
n-dimensional space displaying a stable or Lévy distribution of jump lengths and a finite
average time between jumps. Due to the finiteness of the mean waiting times, this process is
of Markovian nature. A general feature of Lévy distributions is that the MSD diverges:

〈|x(t) − x(0)|2〉 → ∞ (5.2)

corresponding to the fact that long jumps are considered to be instantaneous. Clearly, for
diffusion of a massive particle in physical space the velocity cannot be infinite; therefore these
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unphysical flights are replaced by Lévy walks [70,85] in which one takes into account the time
needed to complete each jump of the random walk. As a consequence, even when the average
jump distance is infinite, the MSD after a time t will follow an algebraic dependence on time
such as equation (5.1).

Now a word about Lévy distributions is in order: the theory of Brownian motion relies on
the central-limit theorem, which roughly states that the sum of N independent and identically
distributed random variables obeys a Gaussian distribution in the limit N → ∞, provided
that the first and second moments do not diverge. However, distributions which possess long,
inverse-power-law tails have diverging second- and sometimes even first-order moments. A
well-known example is the Cauchy distribution

p(x) = b

π

1

b2 + x2
(5.3)

whose second-order moment is infinite. Nevertheless, Lévy, Khintchine, and other
mathematicians developed the theory for these distributions in the 1930s [73] showing that
a limiting distribution for the sum of xn independent random variables exists if they are
individually distributed according to

p(x) ∼ αbαc±
|x|1+α

for x → ±∞ (5.4)

with 0 < α < 2 being the characteristic exponent; b > 0; c+ � 0, c− � 0 real constants; and
where Prob(x < xn < x + dx) = p(x) dx. Moreover, the limiting distribution L(x) for the

sum SN = ∑
n xn, that is Prob(x < SN < x + dx)

N→∞−→ L(x) dx, is also a power law of the
form

L(x) ∼ Aα,β

|x|1+α
(5.5)

where Aα,β is a constant depending on the characteristic exponent α and some asymmetry
parameter β related to c+ and c−. This limiting Lévy or stable distribution has finite moments
of order δ:

〈|x|δ〉 =
∫ ∞

−∞
dx |x|δL(x) if 0 < δ < α. (5.6)

From this we see that the variance does not exist if α < 2 and that both the mean and the variance
diverge if α < 1. We also observe that the fact that the individual (5.4) and the limiting (5.5)
distributions have identical forms implies some kind of self-similarity, or absence of scales.

An important result that we will use later is that Lévy distributions all have the same
characteristic function which is of the form

Lα,β(k) =
∫ ∞

−∞
L(x)eikx dx = exp

[
iµk − c|k|α

(
1 + iβ

k

|k|ω(k, a)

)]
(5.7)

where µ is an arbitrary constant, c � 0 is a constant related to α, c+, and c−, and

ω(k, α) =
{

tan(πα/2) for α �= 1

(2/π) ln |k| for α = 1.
(5.8)

These results constitute the Lévy–Gnedenko generalized central-limit theorem, and put
long power-law-tailed distributions on the same level of importance as the well-known Gaussian
distribution. In particular, for α = 2, ω(k, α) = 0 and we recover the usual Gaussian
distribution from equation (5.7). Note also that a symmetric (β = 0) Lα,β(k) with α = 1 gives
the Cauchy distribution, equation (5.3).
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Figure 12. A chaotic trajectory at E = 84 meV,
run until t ∼ 20 000 ps. Shown in the inset is an
enlargement of the rectangular box.

In order to clarify why Lévy walks can be important for the statistical description of
chaotic dynamics, let us recall the phase-space picture emerging from section 3.2. There we
saw that, for energies between the saddle-point barrier along the x- and y-directions and a
value slightly higher than the global maxima, there is a coexistence of stable periodic orbits of
free-diffusive type and rotating ones, implying localization in a potential well. Now imagine
a chaotic trajectory taken randomly from the stochastic region in figure 2. It is clear that, if
it passes near one of the stability regions (left or right islands in figure 2(a)) of the circular
orbit, it will spend some time inside the potential well performing a kind of rotating motion.
On the other hand, if it gets close enough to the central chain of islands originated by the
free-diffusive periodic orbit, it will have a large probability of making a long jump. Here
we have the simplified picture of a random walker displaying long jumps between sites with
a waiting time between them. The large-scale appearance of a typical chaotic trajectory is
shown in figure 12 (note the scales on the x–y axes) together with an enlargement of a small
region. The self-similar pattern exhibited in configuration space by these chaotic trajectories
is evident (compare to figure 7 for the normal diffusion regime).

The important difference between localization around rotating orbits and free jumps can be
predicted from the bifurcation diagrams shown in figure 4: while the translational motions suf-
fer abrupt bifurcations producing an infinite hierarchy of islands and cantori in phase space, as
sketched in figure 5, the trace of the monodromy matrix for the circular orbit changes smoothly
with energy, which implies that at a given energy this hierarchy will be truncated. Therefore we
expect a very high rate of long jumps between sites, while the waiting time statistics should give
finite average times. This is the proper scenario for a random walker exhibiting superdiffusion,
as has been shown in other systems [56]. Of course, if the island-around-island structure were
due to localized periodic orbits, what one should expect is anomalously long waiting times and
thus a subdiffusive regime, which is found in some Hamiltonian maps [68, 70]. We think that
this deterministic mechanism for long jumps and superdiffusion, apart from specific details of
this potential such as the coupling along the diagonal and the small maxima at the on-top sites,
is generic for non-separable two-dimensional periodic potentials, since the ultimate reason for
it is the abrupt bifurcation due to the opening of energetic barriers. Many adiabatic potentials
for surface diffusion will present similar qualitative features.

The analytic description of anomalous diffusion in terms of random walks can be given
following different models [65, 66, 69, 84, 86]. As we are interested in the connection
between MSDs and velocity power spectra with Lévy statistics, we will use here the simplest
models [65,66] containing the basic ingredients—that is, a walker that at random times follows
statistically independent free paths of a given length, with the jump length following a Lévy
distribution. Moreover, in order to ensure physical meaningfulness one should assume also
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a duration time for each jump (a Lévy walk) and the simplest choice to make is that during
the jump the walker has constant velocity. Geisel et al [65, 87] were the first to identify
superdiffusion due to Lévy walks in chaotic Hamiltonian systems, and used this description
within a renewal formalism [73,88] in which the central quantity is the probability distribution
for a jump to be of duration t . This should be equal to the jump length distribution with
the constant-velocity assumption; furthermore this distribution is considered to be of Lévy
type (5.4). Expressing the autocorrelation function for the velocities in terms of the jump
duration times distribution ψ(t):

C(t) ∼
∫ ∞

t

(τ − t)ψ(τ) dτ, (5.9)

and transforming to the Laplace domain, they extracted different behaviours for the power
spectra and MSDs depending on the exponent α from ψ(t) ∼ t−1−α .

Here we follow in detail an alternative approach, the CTRW approach, which leads to the
same results but is more general in the sense that it can contain both the superdiffusive and
subdiffusive regimes. It will also allow us to derive some important relations that we shall
use later for other purposes. In the CTRW formalism [66, 84], the central quantity is ψ(l, t),
the probability density for moving a distance l at time t in a single motion event. As a simple
picture, we can consider particles that move from site to site through single jumps, then stop
and choose a new direction and time of sojourn at random, according to given probabilities.
We see that not only jump distributions—as in the renewal formalism—but also waiting time
distributions come into play. If jump lengths and waiting times are independent random
variables, ψ(l, t) can be written as

ψ(l, t) = φ(l)w(t), (5.10)

with φ(l) the probability for a jump to be of length l and w(t) the probability for a waiting time
in the interval (t, t + dt). Then we are led to the instantaneous jump picture (Lévy flights). In
order to obtain Lévy walks and a duration time for the jumps, one can introduce a space-time
coupling [66, 84, 86] and express ψ(l, t) as

ψ(l, t) = p(l|t)φ(l) (5.11)

where p(l|t) is the conditional probability of moving a distance l in a time t . Now one assumes a
Lévy distribution for φ(l) as in (5.4), and jumps of constant velocity, i.e., p(l|t) = δ(t−|l|/v0).
The desired quantity is the pair correlation self-function G(x, t) which we recall is the
probability of being at position x at time t with initial condition G(0, 0) = δ(0). This is
related to ψ(x, t) in a standard way [86] by

G(x, t) =
∑
x ′

∫ t

0
G(x ′, τ )ψ(x − x ′, t − τ) dτ + �(t)δx,0, (5.12)

where

�(t) = 1 −
∫ t

0
w(τ) dτ (5.13)

is the probability of survival at the initial site. The initial condition of starting from x = 0
at t = 0 is incorporated in the Kronecker delta (the x-variable is now discrete, since we
assume that the particle is located only at active sites, separated by a distance a). The above
relation is an integral equation that can be easily solved by Fourier–Laplace transformation
(x, t) −→ (K, s), since in the Fourier–Laplace domain it becomes

G(K, s) = G(K, s)ψ(K, s) + �(s), (5.14)
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with the solution

G(K, s) = 1 − w(s)

s

1

1 − ψ(K, s)
, (5.15)

using the Laplace transform of (5.13), �(s) = [1 − w(s)]/s. Note that this is not the
dynamic structure factor, since we have used Laplace transformation in time rather than Fourier
transformation, but it can be easily generated from it. In fact, since the van Hove function
G(x, t) in (4.14) is an even function of time, the dynamic structure factor may be written as

S(K, ω) = 1

π
Re[G(K, iω)]. (5.16)

Now, using the expression

ψ(x, t) ∼ x−1−αδ(t − x/|v0|) (5.17)

in the CTRW with coupled memory, equation (5.11), one arrives at the following asymptotic
expansions for ψ(K, s) [86], valid in the limit K → 0, s → 0:

ψ(K, s) ∼ 1 − τ̄ s − CK2 α � 2 (5.18)

ψ(K, s) ∼ 1 − τ̄ s − CK2sα−2 1 < α < 2 (5.19)

where τ̄ = ∫
dt t

∫
ψ(x, t) dx or mean waiting time is finite for α > 1. Therefore the

waiting time distribution has the asymptotic s → 0 form, w(s) ∼ 1 − τ̄ s, for both α-regimes.
Introducing the above equations into (5.15) one obtains for the Fourier–Laplace transform of
the G-function

G(K, s) ∼ 1

s + CK2/τ̄
α � 2 (5.20)

G(K, s) ∼ τ̄ s2−α

τ̄ s3−α + CK2
1 < α < 2. (5.21)

From the expression for the G-function in the Fourier–Laplace domain, we can obtain quantities
of interest. For instance, using the relation between the moments and the characteristic
function [41]:

〈x2(t)〉 = −∂I (K, t)

∂K2

∣∣∣∣
K=0

, (5.22)

the MSDs from equations (5.20) and (5.21) are given by

〈x(t)2〉 ∼ t α � 2 (5.23)

〈x(t)2〉 ∼ t3−α 1 < α < 2, (5.24)

which show how the normal and anomalous diffusion regimes arise from the value α of the
Lévy distribution (5.4).

To check the validity of these statistical models we have calculated [28] the MSDs and
jump length distributions as in section 4.5. As stated before, for energies close to the onset
of abrupt bifurcations, between 75 and 90 meV, a kind of superdiffusive Lévy walk model
is expected to describe the chaotic dynamics. In figure 13 we plot the MSD at two different
energies, 84 and 80 meV; the plots show the anomalous diffusive behaviour, with α ∼ 3/2
and α ∼ 5/4 respectively, as taken from (5.24). The corresponding integrated jump length
distributions are shown in figure 14, which clearly are of Lévy type (we also stress the fact that
the power-law behaviour is expected for long jump lengths), with exponents in agreement with
those of the MSD following (5.24). To observe superdiffusion, in addition to the Lévy jump
length probability, one must have waiting time distributions of Gaussian type, or decaying
faster than the sojourn times. In figure 15 we show the first-passage-time distribution through
the interval −a/2 � x � a/2 (a is the unit-cell length), at E = 80 meV, of an initial ensemble
of trajectories started along the line x(0) = 0. The decaying is exponential, implying that the
mean waiting time inside a unit cell is finite.
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Figure 13. pt(a) The MSD at E = 80 meV; (b) the MSD
at E = 84 meV. Note the logarithmic scales on both axes.

Figure 14. Integrated jump probability distributions
(solid curves) at (a) E = 84 meV and (b) E = 80 meV.
Only jumps with lengths less than 50 unit cells are shown.
The theoretical predictions given by equation (5.4) are
plotted as dashed curves.
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Figure 15. The first-passage-time distribution through one unit-cell boundary (x = ±a/2) for an
initial ensemble of chaotic trajectories with x(0) = 0.

5.3. Power spectra and dynamic structure factors

A quantity where it is convenient to observe anomalous diffusive behaviour, because it can be
related to experiment, is the velocity power spectrum. At very small frequencies the power
spectrum contains information on the diffusional dynamics at long times (indeed, for normal
diffusion it gives the diffusion coefficient at ω = 0; see (4.30) and figure 8), and from it
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Figure 16. Velocity power spectra at two different energies: (a) E = 84 meV and (b) E = 80 meV.
The frequencies are given in units of the harmonic frequency ω0 = 2π

√
V0/ma2.

the behaviour of MSDs and the structure factor can be extracted. At long times, the velocity
autocorrelation function and MSD satisfy the Green–Kubo relationship [35]:

σ 2(t) ≡ 〈x2(t)〉 ∼ 2t

∫ t

0
〈v(0)v(τ )〉 dτ, (5.25)

valid if the velocity is a Markov process. Performing the Laplace transformation, one obtains
the relation

σ 2(s) = −1

s

∂

∂s
Z(s) +

Z(s)

s2
(5.26)

where Z(s) is the Laplace transform of the velocity autocorrelation function. Now, if we have
an anomalous behaviour of the MSD σ 2(t) as given by equation (5.24), this implies, substituting
in the above equation (5.26) and using the relationship between Laplace and Fourier transforms,
that the power spectrum, equation (4.29), should behave at small frequencies as

Z(ω) ∼ ωα−2. (5.27)

Therefore, because 1 < α < 2, Z(ω)diverges at small frequencies, and the diffusion coefficient
as defined by the Einstein relation or equivalently as in equation (4.30) does not exist. The
behaviour of the velocity power spectrum at small frequencies is exemplified in figure 16,
showing an exponent α in agreement with the one obtained from the MSD in figure 13; see
also (5.24)–(5.27).

On the other hand, at large frequencies, the velocity power spectrum contains dynamical
information on the short-time dynamics, and it is possible to extract from it the frequency of
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Figure 17. (a) The power spectrum at frequencies around ω0 for E = 100 meV (normal
diffusion regime) fitted with Padé approximants to show the structure of dynamical Pollicott–
Ruelle resonances; (b) the power spectrum at finite frequencies for E = 84 meV (anomalous
diffusion regime).

the frustrated translational mode [16,51]. When the deterministic dynamics is the relevant one,
peaks in the power spectrum at finite frequencies can be associated with resonances (poles of
the power spectrum analytically continued in the imaginary plane [9,89,90]) which are related
to the different modes of relaxation towards equilibrium governed by the classical dynamics.
These are usually called Pollicott–Ruelle resonances. As an illustration, we present in figure 17
the finite-frequency spectra at E = 100 and 84 meV. The dashed curves are numerical Padé
approximations used to extract the relevant poles. It is seen than when the system is closer
to ergodicity (figure 17(a)) the peaks are much broader and we can discern only a single
peak at ω = ω0 which corresponds to the frequency of the frustrated translation. On the
other hand, a richer structure of resonances can be seen in the case of anomalous diffusion,
figure 17(b), which is the hallmark of different stable periodic orbits. Here we merely mention
that real poles of the analytically continued power spectrum give purely decaying behaviour
for the velocity autocorrelation function (or the autocorrelation function of any observable
in general), while complex poles represent damped oscillations with the real part giving the
period of the oscillation and the imaginary part the relaxation rate [9, 90].

The existence of stable or Lévy distributions of the type (5.4) affects the wavevector-
transfer or K-dependence of the dynamic structure factor. To see this, suppose a one-
dimensional random walker to have the algebraic jump length probability distribution (5.4) for
the individual steps (a simple model is the Weierstrass random walk [69, 91, 92]). Then, the
probability density for the walker being at position x after N steps, these being independent,
is the convolution

GN(x) = φ(l) ∗ · · · ∗ φ(l), (5.28)
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Figure 18. The FWHM of the dynamic structure
factor at small parallel wavevector transfer K , for
different energies. Circles: E = 100 meV, normal
diffusion regime. Triangles: E = 84 meV. Squares:
E = 80 meV. The solid curves show a fitting to the
K-dependence given by equation (5.31).

N times, and where, by definition, GN(x) is a discrete time one-dimensional pair correlation
function. In Fourier space, the intermediate-scattering function can then be expressed as

IN(K) = φ(K)N . (5.29)

For the probability distribution (5.4), the characteristic function φ(K) has the limiting K → 0
form [69] (see also (5.7)):

φ(K) = e−c(α)|Ka|α (5.30)

where a is the unit-cell length. By defining the time t = N�t and a generalized diffusion
coefficient as D = c(α) lima,�t→0(a

α/�t), and using equation (4.16), one readily finds for
the dynamic structure factor at small K the functional form

Ss(K, ω) = 1

π

DKα

ω2 + D2K2α
. (5.31)

Note that within this Weierstrass random-walk approach, when α = 2 the characteristic
function (5.30) is a Gaussian and we recover the result for normal diffusion, equation (4.17).
The prediction for the small-K behaviour of the dynamic structure factor (5.31) is verified
in figure 18. The FWHM of the numerically calculated Ss(K, ω) at different energies in the
anomalous diffusion regime (E = 80 and 84 meV) are well fitted by the expression DKα . The
normal diffusion regime α = 2 is also shown for comparison.

The above discussion entails taking the K → 0 (or x → ∞) limit for the two cases of
normal and superdiffusive regimes. In order to relate the K-behaviour of the full width at
half-maximum (FWHM) of the dynamic structure factor to jump length distributions, for all K
in the range of the reciprocal lattice, one usually assumes a jump diffusion model [53,93] and
a master equation for G(x, t). Working again with only one dimension, and discrete lattice
sites xi , the master equation reads

∂G(xi, t)

∂t
=

∑
j �=i

[W(xi |xj , t)G(xj , t) − W(xj |xi, t)G(xi, t)] (5.32)

where W(xi |xj , t) = lim�t→0 = p(xi, t + �t |xj , t)/�t is the probability of transition from
site j to site i at time t , and of course p(xi, t |xj , t

′) is the conditional probability of being
at site i at time t given that it was at site j at time t ′. Now the assumption is to consider
time-independent transition probabilities, or transition probabilities per unit time W(xi |xj ), so
that (5.32) can be solved by Fourier transforming in space [53] yielding

I (K, t) = e−t/τ (K)I (K, 0), (5.33)
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diffusion model equation (5.36), in the normal diffusion regime
(thick solid curve) and the anomalous diffusion regime (thin solid
curve). Here q = aK . The parameters chosen have been b = 1 in
equation (5.37) and α = 1.5 in (5.38).

with I (K, t) = ∑
i exp (−iKxi)G(xi, t) the intermediate-scattering function, and

τ−1(K) = 2
∑
j �=i

W(xj |xi) sin2 [K(xj − xi)/2]. (5.34)

the inverse of the relaxation time. Now, because only differences in position appear in
equation (5.34) and xj − xi = la, l being a positive integer and a the distance between
adjacent sites, we can write

τ−1(K) = 2ν

∞∑
l=1

p(l)[1 − cos(laK)], (5.35)

where p(l) is the jump distribution, or probability of jumping over l sites in a single jump, and
ν the total jump rate, or probability of making a jump per unit time, ν = ∑

i �=j W(xj |xi).
On Fourier transforming in time to obtain the dynamic structure factor, a Lorentzian shape

with the FWHM given by

 = τ−1(K)/2 = ν

2

∞∑
l=1

p(l)[1 − cos(laK)] (5.36)

is again obtained. This expression is customarily used to obtain jump length probabilities from
experimental or theoretical knowledge of the dynamic structure factor at different K , assuming
normal diffusion. Here we show the different K-dependences of the FWHM in the case of
superdiffusion. For normal diffusion, we saw that jump probabilities are distributed according
to an exponential function, p(l) ∼ e−bl , b being a positive constant. The FWHM can now be
expressed in analytical form as

 = ν(1 + eb)(1 + cos (aK))

4(eb − 1)(cosh b + cos (aK))
, (5.37)

where the periodicity of the FWHM in the Bravais lattice is clear (see figure 19). For anomalous
diffusion, we assume a Lévy distribution of jump lengths of the type (5.4), and the following
expression for the FWHM is calculated:

 = ν

4
[2ξ(1 + α) − Li1+α(e−iaK) − Li1+α(eiaK)]. (5.38)

Here ξ is the Riemann zeta-function [94] and Lin(z) = ∑∞
k=1 zk/kn are the

polylogarithmic or Jonquiére functions. In figure 19 we plot the FWHM for the case of
anomalous diffusion with a Lévy exponent of α = 1.5 (the deterministic case at E = 84 meV),
and compare it with the case of normal diffusion to stress the differences.
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5.4. Fractional dynamics

The divergence of second-order moments and the absence of a Gaussian distribution for the
G-function imply that the usual diffusion equation (4.11) is no longer valid.

Here we see that a natural generalization of this equation for superdiffusion, assuming
the existence of Lévy distributions of jump lengths, is given by a diffusion law with fractional
derivatives in space. We will follow the derivation of reference [95]. Fractional derivatives in
space are conveniently defined through the Riesz/Weyl fractional operator ∇β [96], which has
a simple form when one computes its Fourier transform, namely

∇βf (K) = −|K|βf (K) (5.39)

leading in one dimension to the definition

∇β = ∂β

∂xβ
= − 1

2π

∫ +∞

−∞
dK e−iKx |K|β. (5.40)

Now, it has been shown that the integral equation for G(x, t) in equation (5.12) is
equivalent [86] to the following generalized master equation:

∂

∂t
G(x, t) =

∑
x ′

∫ t

0
W(x − x ′, t − τ)G(x ′, τ ) dτ, (5.41)

with the kernel (transition probability) in Fourier–Laplace space defined by

W(K, s) = ψ(K, s) − w(s)

1 − w(s)
s (5.42)

where the functions w(t) and ψ(x, t) are the same as in section 5.2. Using a CTRW model
with uncoupled jump length and waiting time distributions as in (5.10), where φ(x) is of Lévy
type, leads to a limiting (K, s) → (0, 0) distribution for ψ(K, s) of the form

ψ(K, s) ∼ 1 − τ̄ s − CKα (5.43)

which comes from expanding φ(K) and w(s) in Taylor series and taking the small-t and
small-K limits. Introducing this into the kernel yields

W(K, s) ∼ −C

τ̄
Kα. (5.44)

Considering as characteristic of the diffusion process only the limiting kernel of the diffusion
process in the generalized master equation (5.41), and transforming it to Fourier–Laplace
space, one obtains

sG(K, s) − G(K, 0) = −C

τ̄
KαG(K, s). (5.45)

Upon inverting the transforms and using the definitions of the Riesz fractional operator (5.39)–
(5.40), one obtains the fractional diffusion equation

∂

∂t
G(x, t) = Deff

∂α

∂xα
G(x, t), (5.46)

where the effective diffusion constant is Deff = C/2τ̄ .
We note that this equation is linear in time, since Lévy flights with finite mean waiting times

are Markovian. Corresponding equations for the subdiffusive regime have been derived [64,95]
which have a fractional dependence on the time derivatives, since fractal time processes are
not Markovian. We note also that the above fractional equation has as a solution for the
characteristic function, when transformed to K-space, I (K, t) = exp[−Deff t |K|α], which
corresponds to a continuous Weierstrass random walk as given by (5.29)–(5.30) and leads to
a dynamic structure factor of the form (5.31).

Fractional equations for anomalous superdiffusion have been generalized to include
external force fields [97]
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Figure 20. (a) The Poincaré surface of section at x = 0 of the full Langevin dynamics,
equation (4.25), at T = 50 K and γ = 10−3 ps−1. (b) The velocity power spectrum and MSD
(inset) for an ensemble of 1000 trajectories with a Maxwell distribution of velocities at the same
temperature. The frequencies are in units of the fundamental frequency ω0.

5.5. Influence of Gaussian white noise

The assumption that the system is in thermal equilibrium and that the dissipation mechanism
is of the form −γ Ṙ defines the statistical properties of the noise through the fluctuation-
dissipation theorem, and these are those of a Gaussian white noise [50, 98]. Therefore, the
ordinary Langevin equation with a δ-correlated Gaussian noise and constant friction, with or
without an external force field, describes only normal diffusion of Brownian particles in a
long-time run. A Langevin equation can be used to model anomalous diffusion, however, if
additional features are considered. For example, a Gaussian but coloured noise can give rise to
anomalous diffusion (both superdiffusion and subdiffusion) in the long-time asymptotics [78]
even in the absence of dissipation [75]. Another possibility is to consider diffusion governed
by a Gaussian white noise but with a time-dependent friction [77], or generalized Langevin
equations with a friction memory kernel [76]. In most of the cases the basic physical ingredient
is that the system is not in thermal equilibrium (for instance, we have an external source
of noise and the fluctuation-dissipation relation does not hold, or our stochastic process is
non-Markovian due to some kind of frictional memory). Apart from this formal long-time
asymptotics, it is important to realize that, even if a stationary solution for the probability
density of the diffusion process exists, the dynamics of the relaxation to the stationary behaviour
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can be very different depending on specific parameters of the system. Our aim now is to study
this relaxation dynamics within the classical Langevin equation, to clarify the role of the
adiabatic potential and the chaotic dynamics in the relaxation process, as well as the influence
of noise and dissipation on the deterministic dynamics.

When introducing dissipation, the stable periodic orbits become sinks or attracting
centres [99] and the invariant tori (islands) are destroyed. Both regular and chaotic motions
become transient, since eventually all trajectories settle down in one of the sinks (minima at the
hollow or the on-top sites). However, the existence of an external force, even if it is random, will
eventually provide enough energy for escaping an attractor and give rise to diffusive motion.
The addition of weak noise to a non-linear dynamical system can modify considerably its
local stability properties, but global stability may be relatively conserved [100]. The noise
also influences the transport properties and can induce transitions between different stable
steady states [101]. Here we assume the simplest possible model for including friction and
temperature, which has also been used in the molecular dynamics simulations of the system,
namely a Gaussian white noise with a constant friction, corresponding to a Langevin equation
of the type (4.25). In order to avoid strong perturbations of the deterministic dynamics, we
keep the noise intensity (temperature) small and the friction constant also small. We have
solved the corresponding Langevin equation for different values of friction and temperature,
using an accurate fourth-order stochastic Runge–Kutta method [102]. High-order methods are
desirable in order to treat properly the part corresponding to the classical dynamics, especially
at low values of friction. To give an idea of the changes originated in the chaotic dynamics,
we have propagated an ensemble of trajectories with the same initial conditions as were used
in figure 2 and calculated again the Poincaré surface of section. This is shown in figure 20(a)
for T = 50 K and friction γ = 10−3 ps−1. It is seen that the island structure coming from
the main parallel diffusing motion around y = py = 0 (compare to figure 2(a)) becomes
blurred, but still there are many orbits giving narrow bands around this centre; therefore there
is a resemblance to quasiperiodic motion of the free-diffusive type.

As pointed out above, without any additional ingredients in the usual Langevin equa-
tion (4.25) the diffusional dynamics is expected to be normal when the time for thermal
equilibration is reached, meaning that any effect due to the adiabatic potential is washed out by
the frictional coupling. The time needed for that is τth > γ −1. If the friction constant is small
enough, it is possible that the thermal equilibration time is much bigger than the equilibration
time due to the chaotic dynamics, and under such circumstances one could observe a transient
region in the MSD or the power spectrum where the adiabatic or systematic potential plays an
important role.

For the values of T and friction used in figure 20(a), we have calculated the MSD and
power spectrum of a canonical ensemble of trajectories with an initial Maxwell distribution
for the velocities, shown in figure 20(b). Note that thermal equilibration times are of the order
of 103 ps, while dynamical equilibrium is reached at about 100 ps. This can be appreciated in
the inset, where we can distinguish two different slopes for the MSD, one giving ‘transient’
anomalous diffusion and the other normal diffusion, and the same can be seen in the behaviour
of the power spectrum at small frequencies. Since experimental timescales are finite, this
transient anomalous diffusion could be observed in some systems (for this particular one, γ

was found to be around 1 ps−1 [12] and transient anomalous diffusion cannot be seen). It is
worth noting that for diffusion of Xe atoms on a Pt(111) surface the extreme case of ideal-gas
behaviour (zero effective friction and no influence of the adiabatic potential, corresponding to
ballistic diffusion) has been observed experimentally [103]. Finally, it is also interesting to
see that at finite frequencies the power spectrum shows a broad band around ω = ω0 (recall
that the frequencies in figure 20(b) are scaled by ω0) which is the fingerprint of the frustrated
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translational motion. This should be compared to the power spectrum obtained from the
deterministic dynamics at E = 100 meV, figure 17(a).

6. Conclusions

The classical dynamics can be considered as a starting point, or the simplest level of
approximation, for the analysis of vibrational and diffusional transport processes of atoms
adsorbed on metal surfaces. Although a quantitative study usually requires the inclusion
of some kind of frictional coupling and thermal effects, the detailed investigation of the
deterministic dynamics presents some interesting aspects, both for practical and conceptual
reasons. First, the role played by the purely adiabatic atom–surface interaction, generally
described by a two-dimensional PES, can be better clarified. Since in general the PES can
be regarded as non-separable, the dynamics will be complex, showing different degrees of
integrability and chaos depending on the energy. Second, the chaotic dynamics by itself can
induce different diffusive behaviours. In this respect, it can be seen as a stochastic process
and approached within a statistical mechanical framework, developing a theory of transport in
phase space. This justifies the use of statistical mechanics for treating transport processes in
systems with few degrees of freedom, without the need to introduce a coupling to a thermal
bath. Third, the deterministic dynamics can influence considerably the existence of long jumps
and explain how they arise in complex potentials. Moreover, it reveals what features of the
adiabatic potential can be of relevance for explaining qualitative details of the experiments,
such as the existence of long diffusion paths along specific directions. Fourth, it can give
rise to diffusion mechanisms different to those usually considered and produce anomalous
behaviour (diffusion faster or slower than normal) which could be eventually detectable in
different experimental quantities. And fifth, it determines the short-time behaviour including
vibrational motions as well as the trends of the system towards equilibrium.

The work presented in this review can be considered as a first step towards a deeper under-
standing of the role played by the chaotic dynamics in atom–surface diffusion, as well as the
possibility of observing anomalous transport in these systems. We envisage several interesting
continuations of the work discussed here. From a more theoretical point of view, the relation
between the phase-space structure (periodic orbits) and the Pollicott–Ruelle resonances needs
to be clarified, using recent mathematical techniques such as trace formulae [9, 104, 105].
Moreover, it is important to see the effect of adding noise to such dynamical resonances. On
the other hand, the approaches to atom–surface diffusion discussed here, even the Langevin
and FP formalisms, are the simplest ones, since the friction is assumed to be constant and the
random force a purely Gaussian white noise. Furthermore, no interaction between adatoms is
considered. In a variety of physical situations, one can think of including additional effects.
The most obvious one is the effect of coverage—by taking into account adatom interactions.
The shape of the quasielastic peak is very sensitive to correlated motions of the adatoms, and
a marked increase in the peak width with increasing coverage is observed in the experiments
which has not yet been explained theoretically [14]. Another realistic situation that could
be considered is non-local effects produced by a time-dependent friction or correlated noise.
Retardation effects can be justified if the substrate fluctuations, characterized by the Debye
frequency, are of the order of the adatom frequency of vibration, but if adatom–adatom interac-
tions are included, a correlated noise term may also be necessary, which is not considered in the
above simulations [14]. We note that in these cases long-time anomalous transport may indeed
occur within the Langevin formalism [76–78]. As a last point, when an external (electric or
magnetic) field is added, transport properties can change drastically and a non-zero net current
(directed transport) may occur, as is the case in surface electromigration [106]. The addition
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of an electric field may also serve to enhance and control diffusion [107]. The existence of
directed transport in periodic potentials (also called the ratchet effect) is being actively studied
now; this work is mainly motivated by the basic physical mechanism of operation of biological
molecular motors, and the chaotic dynamics may play an important role in such transport [108].
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